DEVELOPMENT OF A ROBUST, ACCURATE AND REPRODUCIBLE PROCEDURE FOR QUANTITATIVE ANALYSIS OF CARDIAC TROPONIN T USING A CHIP-BASED NANOSPRAY SOURCE

INTRODUCTION

Thermo) were used. Specific parameters of the LC/MS analysis are shown in Table 1.

Fig. 2. Configurations of LC/MS system used in this study.

Troponin T tryptic digestion product (YEINVLR) and a synthetic structural analogue (internal standard; YEIQVLR) were monitored by MS detector in a multiple reaction monitoring mode. Three transitions from doubly charged ion of YEINVLR peptide were recorded: $453.75 \rightarrow 136.1$, $453.75 \rightarrow 293.0$ and $453.75 \rightarrow 614.7$, whereas the structural analogue produced three following transitions: $460.75 \rightarrow 136.1$, $460.75 \rightarrow 292.9$ and $460.75 \rightarrow 628.7$. A standard addition calibration curve was used for quantitation. The amount of peptide in biological sample was used as a representation of the amount of parent protein. Microbore, direct injection nanoflow and preconcentration nanoflow LC/MS methods were compared in terms of feasibility, linearity, sensitivity, accuracy and precision.

Mariola Olkowicz^{a,b}, Iwona Rybakowska^c, Stefan Chłopicki^{d,e}, Helena Svobodova^f, Gary A. Valaskovic^f, Ryszard T. Smoleński^a

^a Department of Biochemistry, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland (m.olkowicz@gumed.edu.pl) ^b Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627, Poznan, Poland ^c Department of Biochemistry and Clinical Physiology, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland ^d Department of Experimental Pharmacology, Jagiellonian University Medical College, Grzegórzecka 16, 31-531 Krakow, Poland e Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzyńskiego 14, 30-348, Krakow, Poland ^f New Objective Inc., 2 Constitution Way, Woburn, MA 01801 USA

METHODS										
Table 1. LC/MS parameters of the tested methods.										
	I SETUP	II SETUP	III SETUP (preconcentration							
	(microflow LC/MS)	(direct injection								
		nanoflow LC/MS)	nanoflow LC/MS)							
System configuration	HPLC system;	nanoRSLC system;	nanoRSLC system;							
	HESI II interface;	PicoChip system (used for	PicoChip system (used as							
	TSQ Vantage	separation and as ion	ion source);							
		source);	TSQ Vantage							
		TSQ Vantage								
Analytical column	Hypersil BDS C18 (100 x	ProteoPep™ II, C18 (100	Acclaim PepMap100							
	1 mm I.D., 3 μm, 130 Å,	mm x 75 µm I.D., 5µm,	RSLC C18 (15 cm x 75							
	Thermo Scientific)	300Å, New Objective)	μm I.D., 2 μm, 100 Å,							
			Thermo Scientific)							
Mobile phase	A – FA (0.1%, v/v) in H_2O ;	A – FA (0.1%, v/v) in H_2O ;	A – FA (0.1%, v/v) inH ₂ O;							
	B – FA 0.1%, v/v) in AcN	B – FA (0.1%, v/v) in AcN/	B – FA (0.1%, v/v) in							
		H2O (80:20, v/v)	AcN/H2O (80:20, v/v)							
Gradient elution profile/	25% B, 0–1 min;	15% - 80% B in 8 min	4%-25% B in 10 min;							
program	25%-95% B, 1-6 min		25%-95% B in 22.5 min							
Flow rate	80 μL min ⁻¹	600 nL min ⁻¹	300 nL min ⁻¹							
Injection volume	2.5 μL	0.5 μL	2. 5 μL							
Ion monitoring mode	MRM	MRM	MRM							
Capillary voltage (kV)	3.0	1.8	1.8							
ESI capillary I.D./tip (μm)	100/100	75/15	75/15							
Nebulising gas flow (au.)	15	-	-							
Ion tube temperature (°C)	320	220	220							
Vaporizer temp. (°C)	100	-	_							
Desolvation gas pres. (psi)	5	_	_							

This study developed and compared three analytical procedures for the absolute quantification of troponin T in mouse hearts. All three procedures: microbore, direct injection nano- and preconcentration nanoLC-MS/MS provided excellent linearity, precision and accuracy.

Fig. 3. Representative LC-MRM-MS chromatograms of cTnT-specific peptide (m/z = 453.75) and internal standard (m/z = 460.75) obtained by analysis of a selected unspiked sample using microflow, direct injection nanoflow, and preconcentration nanoflow LC-MS/MS.

RESULTS

LINEARITY AND SENSITIVITY OF THE METHODS

The chip-based preconcentration nanoflow LC/MS method offered the highest sensitivity (LLOQ = 0.25 fg μ L⁻¹) and a minimal matrix effect generating the most reliable quantitative results (Table 2). This LLOQ value was 8 times better than in direct injection nanoflow LC/MS and 200 better than in microflow LC/MS.

Table 2. Comparison between the microflow, direct injection nano-, preconcentration nanoflow LC/MS method in terms of linear range, slopes and Y-intercepts of the weighted calibration curves. Values are mean ± SD, n=5.

	Microflow	Direct injection	Preconcentration nanoflow		
		nanoflow			
Linear range [pg μL ⁻¹]	0.05-20	0.01-2	0.00025-0.4		
Slope	0.8652 ± 0.0523	8.846 ± 0.4743	31.505 ± 1.5661		
Y-intercept	0.3903 ± 0.0191	0.3656 ± 0.0185	0.2716 ± 0.0182		
LOD [pg µL ⁻¹]	0.02	0.003	0.0001		
LOQ [pg µL ⁻¹]	0.05	0.01	0.00025		

The differences in method accuracy or precision for microflow, direct injection and preconcentration nanoflow methods, respectively, were not markedly different (Table 3).

Table 3. Intra-batch and inter-batch accuracy and precision determined for chip-based preconcentration nanoflow LC/MS method.

QC ID	Nominal conc.	Intra-batch				Inter-batch			
	[pg µL ⁻¹]	n	Mean conc.	Accuracy	CV	n	Mean coi	nc. Accurac	y CV
			found [pg μL ⁻	¹] (%)	(%)		found [p	g μL ⁻¹](%)	(%)
Preconcentration nanoflow									
LLOQ QC	0.00025	5	0.00026	104	6	1	5 0.000	96	7
LQC	0.004	5	0.0041	102.5	5	1	5 0.003	95 98.7	5
MQC	0.1	5	0.095	95	4	1	5 0.09	6 96	3
ULOQ QC	0.4	5	0.39	97.5	4	1	5 0.39	97.5	4

Troponin T content in hearts of C57BL/6 and ApoE/LDLR double knock-outs established with preconcentration nanoflow method was: 0.28 ± 0.02 and $0.30 \pm 0.03 \mu g m g^{-1}$ tissue, respectively.

- separation time similar to microflow methods.
- quantitative proteomics.

Foundation for Polish Science

Fig. 4. Standard addition calibration curves for (a) microflow, (b) direct injection nanoflow and (c) preconcentration nanoflow LC/MS.

ACCURACY AND PRECISION OF THE METHODS

CONCLUSIONS

Chip-based nanospray LC/MS offers massive sensitivity gain with accuracy, reproducibility and

• The proposed setup for absolute quantification of cTnT could be a useful template for other targets in

INNOVATIVE ECONOMY NATIONAL COHESION STRATEGY

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND

This study was supported by European Union from the resources of the European Regional Development Fund under the Innovative Economy Programme (grant coordinated by JCET-UJ, No POIG.01.01.02-00-069/09) and TEAM program of Foundation for Polish Science (TEAM/2011-8/7)